Friday, December 12, 2008

General Summations

n
i=1
G(i) = G(n + 2) – G(2) Vajda-33, Dunlap-38
n
G(i) = G(n + 2) – G(a + 1) -
Fibonacci and Golden Ratio Equations http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibForm...
10 of 12 6/4/03 1:49 PM
i=a
n
i=1
G(2 i – 1) = G(2 n) – G(0) Vajda-34, Dunlap-37
n
i=1
G(2 i) = G(2 n + 1) – G(1) Vajda-35, Dunlap-39
n
i=1
G(2 i) –
n
i=1
G(2 i – 1) = G(2 n – 1) + G(0) – G(1) Vajda-36, Dunlap-40
n
i=1
2n – i G(i – 1) = 2n – 1( G(0) + G(3) ) – G(n + 2) Vajda-37(variant), Dunlap-41(variant)
4 n + 2
i=1
G(i) = L(2 n + 1) G(2 n + 3) Vajda-38, Dunlap-43
2 n
i=1
G(i) G(i – 1) = G(2 n)2 – G(0)2 Vajda-39, Dunlap-44
2 n +
1
i=1
G(i) G(i – 1) = G(2 n + 1)2 – G(0)2 – G(1)2 +
G(0) G(2) Vajda-41, Dunlap-46
n
i=1
G(i + 2) G(i – 1) = G(n + 1)2 – G(1)2 Vajda-43, Dunlap-48
n
i=1
G(i)2 = G(n) G(n + 1) – G(0) G(1) Vajda-44, Dunlap-49
i = 0
G(a, b, i)
ri
a + b r
= a +
r2 – r – 1
Stan Rabinowitz,
"Second-Order Linear Recurrences"
card,
Generating Function
special case (x=1/r, P=1, Q=-1)
i = 0
i G(a, b, i)
ri
r (b r2 – 2 a r + b – a)
=
(r2 – r – 1)2 -
n
i = 1
n – i
i – 1
= F(n) -
Fibonacci and Golden Ratio Equations http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibForm...
11 of 12 6/4/03 1:49 PM
i = 0
n – i – 1
i = F(n) Vajda-54(corrected), Dunlap-84(corrected)
n
i = 0
n + 1
i + 1 F(i) = F(2 n + 1) – 1 Vajda-50, Dunlap-82
2 n
i = 0
2 n
i F(2 i) = 5n F(2 n) Vajda-69, Dunlap-85
2 n
i = 0
2 n
i L(2 i) = 5n L(2 n) Vajda-71, Dunlap-87
2 n + 1
i = 0
2 n + 1
i F(2 i) = 5n L(2 n + 1) Vajda-70, Dunlap-86
2 n + 1
i = 0
2 n + 1
i L(2 i) = 5n + 1 F(2 n + 1) Vajda-72, Dunlap-88
2 n
i = 0
2 n
i F(i)2 = 5n – 1 L(2 n) Vajda-73, Dunlap-89
2 n
i = 0
2 n
i L(i)2 = 5n L(2 n) Vajda-75, Dunlap-91
2 n + 1
i = 0
2 n + 1
i F(i)2 = 5n F(2 n + 1) Vajda-74, Dunlap-90
2 n + 1
i = 0
2 n + 1
i L(i)2 = 5n + 1 F(2 n + 1) Vajda-76, Dunlap-92
i=0
5i n
2 i + 1 = 2n-1 F(n) Vajda-91
5i n
2 i = 2n-1 L(n) Vajda-92
Fibonacci and Golden Ratio Equations http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibForm...
12 of 12 6/4/03 1:49 PM
i=0
With Generalised Fibonacci
n
i = 0
ni
G(i) = G(2 n) Vajda-47, Dunlap-80
n
i = 0
ni
G(p – i) = G(p + n) Vajda-46, Dunlap-79
n
i = 0
n
i
G(p + i) = G(p + 2 n) Vajda-49, Dunlap-81
n
i = 0
(–1)i n
i G(n + p – i) = G(p – n) Vajda-51, Dunlap-83

[About FOREXGEN]

ForexGen.com is an online trading service provider supplying a unique and individualized service to Forex traders worldwide. We are dedicated to absolutely provide the best online trading services in the Forex market.

ForexGen provides a unique online trading experience based on our intelligent online Forex trading package, the ForexGen Trading Station, including the best online trading system.

ForexGen serves both private and institutional clients. We have a strong commitment to maintain a long term relationship with our clients.

No comments: